3.51 \(\int \frac{(a x+b x^3)^{3/2}}{x^3} \, dx\)

Optimal. Leaf size=274 \[ \frac{12 a^{5/4} \sqrt [4]{b} \sqrt{x} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right ),\frac{1}{2}\right )}{5 \sqrt{a x+b x^3}}-\frac{24 a^{5/4} \sqrt [4]{b} \sqrt{x} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 \sqrt{a x+b x^3}}-\frac{2 \left (a x+b x^3\right )^{3/2}}{x^2}+\frac{12}{5} b x \sqrt{a x+b x^3}+\frac{24 a \sqrt{b} x \left (a+b x^2\right )}{5 \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{a x+b x^3}} \]

[Out]

(24*a*Sqrt[b]*x*(a + b*x^2))/(5*(Sqrt[a] + Sqrt[b]*x)*Sqrt[a*x + b*x^3]) + (12*b*x*Sqrt[a*x + b*x^3])/5 - (2*(
a*x + b*x^3)^(3/2))/x^2 - (24*a^(5/4)*b^(1/4)*Sqrt[x]*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b
]*x)^2]*EllipticE[2*ArcTan[(b^(1/4)*Sqrt[x])/a^(1/4)], 1/2])/(5*Sqrt[a*x + b*x^3]) + (12*a^(5/4)*b^(1/4)*Sqrt[
x]*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[x])/a^(1/4
)], 1/2])/(5*Sqrt[a*x + b*x^3])

________________________________________________________________________________________

Rubi [A]  time = 0.232554, antiderivative size = 274, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.412, Rules used = {2020, 2004, 2032, 329, 305, 220, 1196} \[ \frac{12 a^{5/4} \sqrt [4]{b} \sqrt{x} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 \sqrt{a x+b x^3}}-\frac{24 a^{5/4} \sqrt [4]{b} \sqrt{x} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 \sqrt{a x+b x^3}}-\frac{2 \left (a x+b x^3\right )^{3/2}}{x^2}+\frac{12}{5} b x \sqrt{a x+b x^3}+\frac{24 a \sqrt{b} x \left (a+b x^2\right )}{5 \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{a x+b x^3}} \]

Antiderivative was successfully verified.

[In]

Int[(a*x + b*x^3)^(3/2)/x^3,x]

[Out]

(24*a*Sqrt[b]*x*(a + b*x^2))/(5*(Sqrt[a] + Sqrt[b]*x)*Sqrt[a*x + b*x^3]) + (12*b*x*Sqrt[a*x + b*x^3])/5 - (2*(
a*x + b*x^3)^(3/2))/x^2 - (24*a^(5/4)*b^(1/4)*Sqrt[x]*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b
]*x)^2]*EllipticE[2*ArcTan[(b^(1/4)*Sqrt[x])/a^(1/4)], 1/2])/(5*Sqrt[a*x + b*x^3]) + (12*a^(5/4)*b^(1/4)*Sqrt[
x]*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[x])/a^(1/4
)], 1/2])/(5*Sqrt[a*x + b*x^3])

Rule 2020

Int[((c_.)*(x_))^(m_)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a*x^j + b*
x^n)^p)/(c*(m + j*p + 1)), x] - Dist[(b*p*(n - j))/(c^n*(m + j*p + 1)), Int[(c*x)^(m + n)*(a*x^j + b*x^n)^(p -
 1), x], x] /; FreeQ[{a, b, c}, x] &&  !IntegerQ[p] && LtQ[0, j, n] && (IntegersQ[j, n] || GtQ[c, 0]) && GtQ[p
, 0] && LtQ[m + j*p + 1, 0]

Rule 2004

Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(x*(a*x^j + b*x^n)^p)/(n*p + 1), x] + Dist[(
a*(n - j)*p)/(n*p + 1), Int[x^j*(a*x^j + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] &&  !IntegerQ[p] && LtQ[0,
 j, n] && GtQ[p, 0] && NeQ[n*p + 1, 0]

Rule 2032

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(c^IntPart[m]*(c*x)^FracP
art[m]*(a*x^j + b*x^n)^FracPart[p])/(x^(FracPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p]), Int[x^(m
+ j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && PosQ[n
- j]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 305

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin{align*} \int \frac{\left (a x+b x^3\right )^{3/2}}{x^3} \, dx &=-\frac{2 \left (a x+b x^3\right )^{3/2}}{x^2}+(6 b) \int \sqrt{a x+b x^3} \, dx\\ &=\frac{12}{5} b x \sqrt{a x+b x^3}-\frac{2 \left (a x+b x^3\right )^{3/2}}{x^2}+\frac{1}{5} (12 a b) \int \frac{x}{\sqrt{a x+b x^3}} \, dx\\ &=\frac{12}{5} b x \sqrt{a x+b x^3}-\frac{2 \left (a x+b x^3\right )^{3/2}}{x^2}+\frac{\left (12 a b \sqrt{x} \sqrt{a+b x^2}\right ) \int \frac{\sqrt{x}}{\sqrt{a+b x^2}} \, dx}{5 \sqrt{a x+b x^3}}\\ &=\frac{12}{5} b x \sqrt{a x+b x^3}-\frac{2 \left (a x+b x^3\right )^{3/2}}{x^2}+\frac{\left (24 a b \sqrt{x} \sqrt{a+b x^2}\right ) \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{a+b x^4}} \, dx,x,\sqrt{x}\right )}{5 \sqrt{a x+b x^3}}\\ &=\frac{12}{5} b x \sqrt{a x+b x^3}-\frac{2 \left (a x+b x^3\right )^{3/2}}{x^2}+\frac{\left (24 a^{3/2} \sqrt{b} \sqrt{x} \sqrt{a+b x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x^4}} \, dx,x,\sqrt{x}\right )}{5 \sqrt{a x+b x^3}}-\frac{\left (24 a^{3/2} \sqrt{b} \sqrt{x} \sqrt{a+b x^2}\right ) \operatorname{Subst}\left (\int \frac{1-\frac{\sqrt{b} x^2}{\sqrt{a}}}{\sqrt{a+b x^4}} \, dx,x,\sqrt{x}\right )}{5 \sqrt{a x+b x^3}}\\ &=\frac{24 a \sqrt{b} x \left (a+b x^2\right )}{5 \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{a x+b x^3}}+\frac{12}{5} b x \sqrt{a x+b x^3}-\frac{2 \left (a x+b x^3\right )^{3/2}}{x^2}-\frac{24 a^{5/4} \sqrt [4]{b} \sqrt{x} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 \sqrt{a x+b x^3}}+\frac{12 a^{5/4} \sqrt [4]{b} \sqrt{x} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 \sqrt{a x+b x^3}}\\ \end{align*}

Mathematica [C]  time = 0.014335, size = 52, normalized size = 0.19 \[ -\frac{2 a \sqrt{x \left (a+b x^2\right )} \, _2F_1\left (-\frac{3}{2},-\frac{1}{4};\frac{3}{4};-\frac{b x^2}{a}\right )}{x \sqrt{\frac{b x^2}{a}+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*x + b*x^3)^(3/2)/x^3,x]

[Out]

(-2*a*Sqrt[x*(a + b*x^2)]*Hypergeometric2F1[-3/2, -1/4, 3/4, -((b*x^2)/a)])/(x*Sqrt[1 + (b*x^2)/a])

________________________________________________________________________________________

Maple [A]  time = 0.016, size = 194, normalized size = 0.7 \begin{align*} -2\,{\frac{ \left ( b{x}^{2}+a \right ) a}{\sqrt{x \left ( b{x}^{2}+a \right ) }}}+{\frac{2\,bx}{5}\sqrt{b{x}^{3}+ax}}+{\frac{12\,a}{5}\sqrt{-ab}\sqrt{{b \left ( x+{\frac{1}{b}\sqrt{-ab}} \right ){\frac{1}{\sqrt{-ab}}}}}\sqrt{-2\,{\frac{b}{\sqrt{-ab}} \left ( x-{\frac{\sqrt{-ab}}{b}} \right ) }}\sqrt{-{bx{\frac{1}{\sqrt{-ab}}}}} \left ( -2\,{\frac{\sqrt{-ab}}{b}{\it EllipticE} \left ( \sqrt{{\frac{b}{\sqrt{-ab}} \left ( x+{\frac{\sqrt{-ab}}{b}} \right ) }},1/2\,\sqrt{2} \right ) }+{\frac{1}{b}\sqrt{-ab}{\it EllipticF} \left ( \sqrt{{b \left ( x+{\frac{1}{b}\sqrt{-ab}} \right ){\frac{1}{\sqrt{-ab}}}}},{\frac{\sqrt{2}}{2}} \right ) } \right ){\frac{1}{\sqrt{b{x}^{3}+ax}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^3+a*x)^(3/2)/x^3,x)

[Out]

-2*(b*x^2+a)*a/(x*(b*x^2+a))^(1/2)+2/5*b*x*(b*x^3+a*x)^(1/2)+12/5*a*(-a*b)^(1/2)*((x+1/b*(-a*b)^(1/2))*b/(-a*b
)^(1/2))^(1/2)*(-2*(x-1/b*(-a*b)^(1/2))*b/(-a*b)^(1/2))^(1/2)*(-x*b/(-a*b)^(1/2))^(1/2)/(b*x^3+a*x)^(1/2)*(-2/
b*(-a*b)^(1/2)*EllipticE(((x+1/b*(-a*b)^(1/2))*b/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))+1/b*(-a*b)^(1/2)*EllipticF((
(x+1/b*(-a*b)^(1/2))*b/(-a*b)^(1/2))^(1/2),1/2*2^(1/2)))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{3} + a x\right )}^{\frac{3}{2}}}{x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a*x)^(3/2)/x^3,x, algorithm="maxima")

[Out]

integrate((b*x^3 + a*x)^(3/2)/x^3, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b x^{3} + a x}{\left (b x^{2} + a\right )}}{x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a*x)^(3/2)/x^3,x, algorithm="fricas")

[Out]

integral(sqrt(b*x^3 + a*x)*(b*x^2 + a)/x^2, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (x \left (a + b x^{2}\right )\right )^{\frac{3}{2}}}{x^{3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**3+a*x)**(3/2)/x**3,x)

[Out]

Integral((x*(a + b*x**2))**(3/2)/x**3, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{3} + a x\right )}^{\frac{3}{2}}}{x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a*x)^(3/2)/x^3,x, algorithm="giac")

[Out]

integrate((b*x^3 + a*x)^(3/2)/x^3, x)